State Machine Entry
Version 1.2
September 1987 P25-01700-02

Changes are made periodically to the information contained in this manual.
These changes will be incorporated into subsequent editions.

Altera Corporation
3525 Monroe Street
Santa Clara, CA 95051
(408) 984-2800
TELEX: 888496

Copyright © 1985, 1986, 1987 Altera Corporation. All rights reserved.

No part of this manual may be copied or reproduced in any form or by any
means without the prior written permission of Altera Corporation.

A+PLUS, SAM+PLUS, LogicMap, Turbo-Bit, MacroMuncher, SAM, BUSTER,
EP310, EP320, EP600, EP610, EP900, EP910, EP1210, EP1800, EPB1400,
EPS444, and EPS448 are trademarks of Altera Corporation. LogiCaps is a
registered trademark of Altera. WordStar is a registered trademark of MicroPro
Corporation. Fido is a trademark of Tom Jennings. MS-DOS is a trademark of
Microsoft Corporation. FutureNet DASH is a trademark of FutureNet
Corporation. PC-CAPS and PC-LOGS are trademarks of Personal CAD
Systems, Inc. IBM Personal Computer is a registered trademark of
International Business Machines Corporation.

Read This First...

The documentation for State Machine Entry (SMV) version 1.2
contains the following sections:

. State Machine Entry
L] SMV Messages

Please insert them in your A+PLUS User Guide after the tab
Il. Design Entry.

At the back of the package, you will find a Warranty Card. Please fill out
the Warranty Card, insert it into the Registration Envelope with the
Altera Registration Card, and mail it to Altera. You will receive future
update information for State Machine Entry software only if you mail this
card.

Manual Updates

Altera documentation is updated with Change Pages, Section
Reprints, and a READ.ME file.

Change Pages are issued for minor changes to the manual. New
information is identified with vertical change bars in the margins next to
the changed text. In addition, the date of issue is printed at the bottom
of each page.

Section Reprints are issued if a section requires a substantial
number of changes. The date of issue is indicated at the bottom of
each page.

A READ.ME File is provided on the A+PLUS INSTALL diskette.
This file contains information about recent changes to the State
Machine Converter software that are not yet reflected in the manual.

Contents

Read This First iii
Manual Updates v
Who Should Use State Machine Entry?..........ccooovveiiiiniiiinnennnn.. SM-1
General RequiremMentscocccveeeeieeeee e SM-2
Functional DesCriptioncccoooiieieeeiiiiiee e SM-3
Design StePS ...ccoieiiiiii e SM-5
SaAMPIE SESSIONS.. ..o e SM-6
EXamPIe 1. e SM-7
The State Diagramccuveeeiiiiiiiiieeeeieeeeeeeeeeeeeeen SM-7

The Algorithmic State Machine (ASM) Chart..................... SM-8
EXample 2. SM-20
EXamMPIE ... SM-29
Design GUIdElNESuvuuniiee e SM-40
State Machine File (SMF) Format............ccooevevevvviiiiiiiiciieeeeenn. SM-45
KEYWOTAS... .o SM-46
White Space and CoOmmEentsScceeeeeeveieeeeeeiieeieeeeene. SM-46
Header Sectionccovvviiiiiiiiiie e SM-47
Declarations Section..............ccoovviiiiiiiiiiiiice e SM-47

State Machine Entry Contents-1

Contents-2

Options SeCtion ... SM-48

Part SECHON ..o SM-48
INPULS SECHON......euviiiiiiiiiiie e SM-49
Outputs SeCtioN..........covviiiiiiiiiiiiie e SM-49
NEtWOrK SECHONveeeeeee e SM-50
Equations Section...........coiiiiiii e SM-50
Machine SecCtion..........coimiiei e SM-50
Clock SUbSECHONceiieiiieeie e SM-51
Clear SUDSECHONuiieiiie e SM-51
States SUDSECHION.......coivueiiiiie e, SM-52
Positional state variable format...........ccccocveeiieninni. SM-52
Keyword state variable format................cccocceeeiiiis SM-53
Transitions and Outputs Subsectionsccccoeeeee SM-53
Transition Syntax.......coceveeiiriiiiiiiieeeeen SM-54

Output Syntax.......cooeeeeiieiiiiiiiiiii e SM-55

Truth Table Sectionoovvevieiiieei e SM-56
End Statement.......ooveiiieii e SM-57

State Machine Converter Messages

Error MESSAQgES ... iivviiiiiie ettt e Messages-2
Information Messages..........ccoovvviiiiiiiiiiiii Messages-11
Warning MeSssagesuuovevviuiiiieieiiee e Messages-11

State Machine Entry

lllustrations

State Machine Entry

Page

State Machine Entry........oooieiiiiiiiee e SM-4
State Diagram for EXAMPLE...........ccoiiiiiiiiiiies SM-8
ASM Chart for EXAMPLETooiiiiiiiiiceee e, SM-9
State Variable Assignments for EXAMPLET SM-10
SMF for EXAMPLET ... SM-15
EXAMPLET.ADFouiiiiiiiiii et SM-18
State Diagram for EXAMPLE2..............ooovviiieieeninnnnnn. SM-21
SMF for EXAMPLE2.........ccooiiiiiiiiee e SM-24
EXAMPLE2.LEF ..., SM-27
State Diagram for EXAMPLES...........ccccvvveeiviiiininnnnn. SM-30
SMF for EXAMPLEScoiiiiiiicieee e, SM-34
EXAMPLES.LEF ..., SM-37
Sample States, Transitions, and Outputs Subsections SM-43
ADF Output for Figure SM-13.........ccoeiiiiiiieieieien. SM-44
BNF Syntax for State Machine File SM-58
Contents-3

Tables

Table Page
SM-1. Truth Table for EXAMPLETccocooviiiiieeae SM-11
SM-2. Legal Characters for State Machine Names................. SM-42

State Machine Entry Contents-5

State Machine
Entry

This package describes the process of creating designs with state
machines. It includes a description of general requirements for entering
State Machine Files and a functional description of Altera’s State
Machine software. In addition, you will find three sample sessions
illustrating the steps used in designing with state machines; a list of
design guidelines; and a reference section detailing Altera’s State
Machine File syntax.

Who Should Use State Machine Design Entry?

This design entry method is convenient for design engineers who are
familiar with one or more of the basic methods for describing the logical
operation of state machine designs, namely, state diagrams,
operational flowcharts (e.g., algorithmic state machine (ASM) charts),
truth tables, and Boolean expressions.

State Machine Entry SM-1

General Requirements

To enter your state machine design with A+PLUS, you need:

u A text editor that uses standard ASCII character conventions. (If
your word processor has both document and non-document
modes, use only the non-document mode.)

L] A file with the extension .SMF.

[@ Refer to /nstallation in the A+PLUS User Guide for
instructions on how to install the State Machine
Converter.

SM-2 A+PLUS User Guide

Functional Description

Altera’s State Machine software enables you to enter and edit a state
machine design with a standard text editor. Multiple state machine
designs may be entered in a single State Machine File (SMF), which
has a flexible syntax that allows you to define states and state
transitions in several different formats. The SMF format also allows you
to enter netlist statements containing primitives, Boolean equations,
and truth tables; and to specify an asynchronous clear input and the
state outputs for your design.

The State Machine software performs automatic flipflop selection. It
also supports an optional automatic part selection feature, which
instructs the Altera Design Processor to select the Altera EPLD that is
best suited to your design requirements.

After you have entered your design into the SMF format, the A+PLUS
State Machine Converter (SMV) translates it into an Altera Design File
(ADF) when the Altera Design Processor (ADP) is invoked. You may
also run the State Machine Converter (SMV) directly from DOS (stand-
alone mode). (Refer to A+PLUS and ADP Reference in the A+PLUS
Reference Guide for instructions.)

If an error is encountered during the SMF-to-ADF conversion, the SMV
displays a message specifying the cause of the error and terminates
design processing. The ADP then processes the ADF into a standard
JEDEC file. Finally, the LogicMap Il program uses the JEDEC file to
program an Altera EPLD.

Figure SM-1 shows a block diagram of this process.

State Machine Entry SM-3

SM-4

Schematic
Capture

ntry

Netlist
Entry

Pinlist

Converter |

State

1 Machine
1 Converter

J

Functional
R Simulator

LogicMap

Figure SM-1. State Machine Entry

A+PLUS User Guide

Design Steps

Every module of a logic system can be defined by its inputs, outputs,
and transitory states. After determining the inputs and outputs, you can
create your design with a state machine by following the steps listed
below. Depending on your own preferences, you may perform these
steps in a different sequence or choose to skip a step. The following
pages contain three sample sessions that illustrate each of the
suggested design steps.

The suggested design steps are:

Define the design inputs and outputs.

Draw a state diagram or an ASM chart.

Define state variables and assign state values.

Create a truth table or a state table (optional).

Enter the design into the SMF format with your text editor.
Save the design in a file with the filename extension .SMF.
Submit the design file to the ADP.

Program the EPLD.

PNoGOARWN

State Machine Entry SM-5

Sample Sessions

This section contains three sample sessions that demonstrate the
suggested sequence of steps for entering designs with state
machines. For additional information on state machine design entry,
refer to Design Guidelines and State Machine File Format.

SM-6 A+PLUS User Guide

Example 1

This sample circuit, called EXAMPLE1, controls the operation of a coin-
activated beverage dispenser. Figure SM-2 shows a state diagram for
EXAMPLE1. The mechanism has three inputs and two outputs.
EXAMPLE1 advances from one state (State 1) to another state
(State 2), to another state (State 3), and then begins again. A
transitory fourth state (State 4) is also possible if the machine becomes
jammed.

Step 1 — Define Inputs and Outputs:

First, you must define the inputs and outputs of your design. In this
case, you have three inputs (COINDROP, CUPFULL, and RESET)
and two outputs (DROPCUP and POURDRNK). You also need to
define output dependencies on inputs and the cycle sequence
needed to perform a specified function.

Step 2 — Draw a State Diagram or ASM Chart:

Next, you draw a state diagram or an algorithmic state machine (ASM)
chart. The state machine diagram and chart both serve the same
purpose of defining your algorithm. Each method is described below.

The State Diagram

A state diagram uses circles and arrows to represent the design. Circles
represent states; arrows represent transitions between states. The
diagram shows the sequence of states and outputs that occur in
response to the inputs, i.e., the status of the outputs for each state and
the effect of the inputs on the transitions. In State 1, the machine is in
standby condition and both inputs are low. When COINDROP goes
high, the machine goes to State 2 and then to State 3. State 4
occurs if both DROPCUP and POURDRNK are asserted. In this case,
a Clear is initiated to force the unit to return to State 1. (Refer to Figure
SM-2.)

State Machine Entry SM-7

SM-8

When you develop a state diagram, you should label the states and
transitions. In complex state machines, it is actually better to assign
symbolic names rather than numbers to the states, in case future
design modifications make it necessary to change the transitions or the
state register values.

/COINDROP

asynchronous
RESET

STANDBY
/DROPCUP
/POURDRNK

TRANSITION
DROPCUP
POURDRNK

S1

STROBE disabled

CUPFULL

COINDROP

S2

/CUPFULL

/DROPCUP
POURDRNK

DROPCUP
/POURDRNK

Figure SM-2. State Diagram for EXAMPLE1

The Algorithmic State Machine (ASM) Chart

The standard symbols used in an ASM chart are: the state box, which
represents a single state; the decision box, which represents a single
decision; and the conditional output box, which describes other
outputs that are dependent on one or more inputs. State names are
represented within circles. Figure SM-3 shows an ASM chart for
EXAMPLE1.

A+PLUS User Guide

Power-up

TRANSITION 54

|

:

No outputs

°
1

DROPCUP

l

POURDRNK

0

State 1

R S — Decision box
State 2
@ D T— State name circle
\ " State box
State 3

Figure SM-3. ASM Chart for EXAMPLE1

Step 3 — Define State Variables and Assign State Values:

Next, you assign the state variables. Each state requires a unique
pattern of state variable values. (The feedbacks from the state registers
are state variables.) In EXAMPLE1, the only outputs required are the
circuit signals themselves. (In other designs, additional outputs may be

specified for each state.)

= The following are allowed: (1) state variables may be
outputs of the circuit, or (2) states may have outputs, or

(3) both.

State Machine Entry

SM-9

SM-10

Figure SM-4 shows the state variable assignments.

~ (DROPCUP .

Q 0 : S1 S2

2! S3 S4
Explanation:

If both DROPCUP and POURDRNK are not
activated (i.e., 0 or not true), the current state is
State 1. If DROPCUP s activated (i.e., true or 1)
and POURDRNK s not activated, the current state
is State2. If DROPCUP is not activated and
POURDRNK /s activated, the current state is
State 3. If both DROPCUP and POURDRNK are
activated, the current state is State 4.

Figure SM-4. State Variable Assighments for EXAMPLE1

Step 4 — Generate a Truth Table:

You may wish to generate a truth table with entries for all available
states, combinations of inputs, and the resulting next states. Table
SM-1 shows the truth table generated for the beverage dispenser
controller circuit. (In a more complex design, the “Don’t Care” entries in
the Inputs Section allow greater flexibility in the logic reduction than
explicit definitions of all combinations.)

A+PLUS User Guide

Table SM-1. Truth Table for EXAMPLE1

INPUTS PRESENT STATE NEXT STATE
COIN- CUP- DROP- POUR- DROP- POUR-
DROP FULL CUP DRNK CUP DRNK

0 X 0 0 0 0

1 X 0 0 1 0

X X 1 0 0 1

X 0 0 1 0 1

X 1 0 1 0 0

X X 1 1 0 0
X =Don'tCare 1=True O =False

Step 5 — Convert the Information into an SMF:

After completing the first four steps, you can conven the information
into a State Machine File (SMF). Examples 1 through 3 walk you
through this process, but be sure to consult Design Guidelines and
State Machine File Format. Note that many sections of the SMF must
be identified by a keyword and a colon (e.g., PART:).

The Altera Design Processor, which processes the SMF, offers
automatic part and flipflop selection. Therefore, when you specify the
part name in the Part Section of the SMF, you may enter either a
specific EPLD name (such as EP600) or AUTO for automatic part
selection. The State Machine Converter assumes that a part with T
flipflops is available and the ADP will automatically choose the part most
likely to fit your design.

s If you wish to use a part without T flipflops—EP310,
EP320, or EP1210—do not enter AUTO; instead,
specify the part name in the Part Section.

For complete details on the SMF syntax, refer to State Machine File
Format.

State Machine Entry SM-11

SM-12

The SMF information is entered in the following sequence:

1.

Specify the header. This section is optional. However, if it is
present, it must be the first section in the file. The header
includes the following information:

Your Name

Your Company
9/30/87

1

A

EP310

Beverage Dispenser

Specify options:

OPTIONS: SECURITY = OFF
Specify the part name:

PART: EP310

Specify the inputs (comments must be enclosed by percent (%)
symbols):

INPUTS:

% acknowledge dropped coin %
COINDROP

% enable fill the cup %
CUPFULL

% clock %
CLK

% clear %
RESET

Specify the outputs:

OUTPUTS:

% enable drop the cup %
DROPCUP

% enable pour the drink %
POURDRNK

A+PLUS User Guide

6. Specify the name of the state machine and its subsections. This
section is identified by the keyword MACHINE:.

MACHINE: dispenser

s

State Machine names may contain up to 32 alphanumeric
characters and underscores (_). No blanks may be
embedded in state machine names. Refer also to Table
SM-2 in Design Guidelines.

Specify the clock in the Clock subsection:

s>

CLOCK: CLK

The clock name in a state machine is the name of the
node feeding the state machine register. In a
synchronous clock, this node is typically the left-hand
side of an INP statement. If a state machine design
requires an asynchronous clock that is driven directly by
a pin, use a CLKB Primitive in the Network Section.
(Refer to Appendix A in the A+PLUS Reference
Guide.)

Specify the asynchronous clear input in the optional Clear
subsection. The clear input resets all state variable values to

Zero.

CLEAR: RESET

Next, you specify the state assignments in the required States
subsection. Each state assignment must be unique. (Refer to
Transition Syntax for other syntax choices.)

State Machine Entry

STATES: [DROPCUP POURDRNK]

S1 [0 0]
S2 [1 0]
S3 [0 1]
S4 [1 1]

SM-13

IS State variables (DROPCUP, POURDRNK) represent
feedbacks and, optionally, output pin names; therefore,
they may never appear in the Outputs subsections that
follow Transitions subsections. The entries in an Outputs
subsection represent the results of the evaluation of a
Boolean expression. They may be used anywhere the
left-hand side of an equation may be used, e.g., as a D,
T, JK, or SR input to an I/O primitive.

Next, define the transitions and outputs. The syntax for
conditional transitions is:

IF <expression> THEN <next state>

where each IF-THEN string represents an arrow in the state
diagram. The Transitions from a state must always precede the
state’s Outputs subsection, which is optional. (Note: EXAMPLE1
does not use Outputs subsections.) Refer to Transition Syntax
for other syntax choices.

Sl:IF COINDROP THEN S2

% No asynchronous state outputs %
S2:83 % unconditional transition %
> |k CUPFULL THEN s1
S4:Sl % unconditional transition %

16 Transitions are evaluated in the order in which they are
entered, i.e., the first transition has precedence over the
second, the second over the third, etc. If no transitions
are specified, the next state is the same as the current
state, i.e., the machine will hold the current state.

7. Terminate the file:

END$

Figure SM-5 shows the completed SMF, including explanatory notes.

SM-14 A+PLUS User Guide

Your Name <— Optional header
Your Company information
9/30/87

1

A

EP310 / White space for easy
. reading
Beverage Dispenser

Security Bit off
OPTIONS: SECURITY - OFF 44—

PART: EP310 ¢ Required section
INPUTS: < Required section
% acknowledge dropped coin %
COINDROP User comment
% enable fill the cup % <& (legal wherever white
CUPFULL space is allowed)
% clock %
CLK
% clear %
RESET
OUTPUTS: << Required section
% eggé;dcrsg the cup % Optic_)na/ Machine
section

% enable pour the drink %

POURDRNK State machine name
/ may not include
MACHINE: dispenser embedded blanks

CLOCK: CLK < Required subsection
CLEAR: RESET <@—— , .
STATES: [DROPCUP POURDRNK] Optional subsection
S1 [0 0]
S2 [1 0] @——— Required subsection
S3 [0 1]
S4 [1 1]
S1:
IF COINDROP THEN §2 @——— Conditional transition
% No asynchronous state outputs % <@————— Oulputs are optional
S2:
S3 % unconditional transition % <= Unconditional transition
S3:
IF CUPFULL THEN S1
S4:
S1 % unconditional transition %
ENDS$ <4 Required End statement

Figure SM-5. SMF for EXAMPLE1

State Machine Entry SM-15

SM-16

Step 6 — Save the SMF:

Save the file under the legal DOS filename EXAMPLE1.SMF and
return to DOS.

Step 7 — Submit the SMF to the ADP:

To submit the file EXAMPLEL.SMF to the ADP, you first display the
APLUS Menu by typing from DOS:

APLUS <Enter>

Press <F4> to display the ADP Menu.

You are prompted to specify your form of input. Type:
S

(for State Machine File). Now answer the <F4> File Name(s) prompt
by typing:

EXAMPLE1l <Enter>

I You need not enter the filename extension; A+PLUS will
automatically add the extension for you. Be sure to
specify the correct pathname and directory.

You are then prompted through the remaining ADP Menu functions:

For <F5> Minimization, press <Enter>. (Y [Yes] is the default).

For <F6> Inversion Control, press <Enter>. (N [No] is the default).

For <F7> LEF Analysis, press <Enter>. (N [No] is the default).

After you have answered the sequential prompts of the ADP Menu,
you are asked:

Do you wish to run under the above conditions [Y/N]?

Enter Y or press <F8> (Execute) to execute the ADP. During design
processing, the State Machine Converter, the ADP, and individual ADP

A+PLUS User Guide

modules will display information messages that report current
processing status. When the design cycle is completed, you are asked:

Would you like to implement another design [Y/N}?

Enter N. You are returned to the APLUS Menu. For detailed
information on the Altera Design Processor and the ADP Menu
functions, refer to A+PLUS and ADP Reference in the A+PLUS
Reference Guide.

Figure SM-6 shows the Altera Design File (ADF) for EXAMPLE1. The

State Machine Converter always produces an ADF from the State
Machine File (SMF) prior to design processing.

State Machine Entry SM-17

SM-18

Your Name

Your Company

9/30/87

1

A

EP310

Beverage Dispenser

<SMV Version information>
OPTIONS: SECURITY = OFF
PART: EP310

INPUTS:
COINDROP, CUPFULL, CLK, RESET

OUTPUTS:
DROPCUP, POURDRNK

NETWORK:

COINDROP = INP(COINDROP)
CUPFULL = INP(CUPFULL)

CLK = INP(CLK)

RESET =INP(RESET)

%

1/O's for State Machine "dispenser”
%

DROPCUP, DROPCUP = RORF(DROPCUP.4, CLK, RESET, GND, VCC)
POURDRNK, POURDRNK = RORF(POURDRNK.d, CLK, RESET, GND, VCC)

EQUATIONS:

%

Boolean Equations for State Machine "dispenser”
%

%

Current State Equations for "dispenser”

%

S1 = DROPCUP ' * POURDRNK '
S2 = DROPCUP * POURDRNK ;
S3 = DROPCUP ' * POURDRNK;
S$ = DROPCUP * POURDRNK;

%
SV Defining Equations for State Machine "dispenser”

%

DROPCUP.d = S2.n;

POURDRNK.d = S3.n;

%

Next State Equations for State Machine "dispenser"
%

S2.n = (S1* COINDROP);

S3.n = (S3) * (CUPFULL)'
+ (82);

END$

Figure SM-6. EXAMPLE1

.ADF

A+PLUS User Guide

Step 8 — Program the EPLD:

Finally, you submit your design to LogicMap II. While still in the APLUS
Menu, press <F5> to select LogicMap Il. If the Logic Programmer card
is plugged in, the program will come up on the screen. If not, the
following message is displayed:

Programmer self test failed

Device must NOT be in socket for this test to pass!

Enter:
C to continue without programming card
T to run diagnostics again
Q to return to operating system

When the LogicMap Il System Level Window is displayed, you are

asked to wait until the calibration process has been completed. Then
the System Level HELP Window is opened.

= Do not put the EPLD into the socket of the programming
unit until you are prompted to do so.

Select Program Device with the box cursor and enter the filename
EXAMPLE1. When you are prompted to:

Select Device for Programming

enter

EP310 <Enter>

LogicMap Il automatically checks whether the EPLD is erased and
ready for programming. After you have answered all the prompts,
programming time is approximately five to ten seconds for this device.
(For complete information on device programming, refer to the

LogicMap Il manual.)

This concludes the first sample session.

State Machine Entry SM-19

Example 2

SM-20

Example 1 introduced you to the basic steps necessary to create and
enter a design with a state machine. The second example, called
EXAMPLE2, guides you through a similar sequence of steps for a more
complex example. Be sure to familiarize yourself with the Design
Guidelines and State Machine File Format for detailed information on
the SMF format and syntax. Note that the SMF format is similar to the
ADF format.

EXAMPLE2 consists of a four-phase stepper motor controller. Figure
SM-7 shows a state diagram for EXAMPLEZ2. The stepper motor can be
rotated clockwise or counterclockwise, depending on the sequence of
signals presented to its windings. This sequence is controlled by the
inputs CW (clockwise), CCW (counterclockwise), and HS (halfstep).
The stepper motor is designed for 7.5 degree steps, i.e., each time a
state changes, the motor rotates 7.5 degrees. By asserting the
halfstep input, the state machine generates intermediate steps,
enabling the motor to move in 3.75 degree increments.

Step 1 — Define Inputs and Outputs:

INPUTS: CW, CCW, HS
OUTPUTS: PH1, PH2, PH3, PH4 (phases 1 through 4)

Step 2 — Draw a State Diagram:

The design has four unique states per cycle and four intermediate (half)
steps. (Refer to Figure SM-7.)

I Altera EPLDs power up with all state variables at logic
zero. Be sure to identify the power-up state of the device
register. If the register powers up in an unidentified state,
the next state is also unidentified. Unless this is your
intention, you should ensure that your design goes to a
defined state at power-up.

A+PLUS User Guide

Power Up
PU

ICW*/CCW
MO/« MDD/

CCW*/HS ‘t ICW*/CCW

Figure SM-7. State Diagram for EXAMPLE2

CCW*/HS

State Machine Entry SM-21

SM-22

Step 3 — Define State Variables and Assign State Values:

The feedbacks from the state register are state variables. In this design,
the values of the state variables are also presented to the output pins
of the design, i.e., the variables are direct outputs of the design.
Although this condition is not possible for all designs, it is highly
desirable because it allows you to save a large number of macrocells.
State variables defined for this example are as follows:

STATES: [PH1 PH2 PH3 PH4]

State assignments are as follows:

PU [0 0 0 0 1]
S1 [1 0 1 0 1
S2 [1 0 0 0]
S3 [1 0 0 1]
S4 [0 0 0 1]
Ss [o0 1 0 1]
Sé6 [0 1 0 0 1]
S7 [0 1 1 0]
S8 [0 0 1 0 1]

Step 4 — Define State Transitions and Outputs:

By examining Figure SM-7, you can derive the following transition
statements for EXAMPLEZ2:

PU:
S1
S1:
IF CW * /HS THEN S3
IF CW * HS THEN S2
IF CCW * /HS THEN §7
IF CCW * HS THEN S8
S2:
IF CW THEN S3
IF CCW THEN S§1

A+PLUS User Guide

S3:

IF

IF

IF

IF
S4:

IF

IF
S5:

IF

IF

IF

IF
S6:

IF

IF
S7:

1IF

IF

IF

IF
S8:

IF

IF

CW * /HS THEN S5
CW * HS THEN S4
CCW * /HS THEN S1
CCW * HS THEN S2

CW THEN 85
CCW THEN 83

CW * /HS THEN S7
CW * HS THEN Sé6
CCW * /HS THEN S3
CCW * HS THEN S§4

CW THEN §7
CCW THEN S5

CW * /HS THEN S1
CW * HS THEN S8
CCW * /HS THEN S5
CCW * HS THEN Sé6

CW THEN S§1
CCW THEN 87

Step 5 — Convert the Information into an SMF:

You now have all the information needed to generate the SMF. Figure
SM-8 shows the SMF for EXAMPLEZ2, including explanatory notes.

=

State Machine Entry

Since the ADP offers automatic part and flipflop
selection, you may specify the part name in the Part
Section of the SMF (in this case, EP900) or type AUTO.
The State Machine Converter assumes that a part with T
flipflops is available and the ADP will automatically
choose the part most likely to fit your design.

SM-23

SM-24

Your Name

Your Company

9/30/87
1

A
EP900

@4——— Optional header

Stepper Motor Controller
OPTIONS: TURBO = OFF, SECURITY = OFF

PART: EP900 <
<

INPUTS:

CW % clockwise rotation enable %
CCW 9% counterclockwise rotation enable %
HS % rotate in 3.75 degree steps %

CLK % clock %

OUTPUTS:

<

% phase outputs to stepper motor %
PH1 PH2 PH3 PH4

<4
MACHINE: Stepper_Motor_Controller

CLOCK: CLK

STATES: [PH1

PU
S1
S2
S3
S4
S5
S6
S7
S8
%

Following are state transition definitions.

[O
[1

p— p— p— p— PP
OO0 OO~

+—
<
PH2 PH3 PH4] @—
0o 0 0]
0 1 0]
0o 0 0]
0 0 1]
0o 0 1]
1 0 1]
1 0 0] /
1 1 0]
0 1 0]

In all cases an ELSE HOLD is implicit.

%
PU:
S1

Figure SM-8.

<

information

Required Part
Section

Required Inputs
Section

User comment
delimited with %
symbols
Required Outputs
Section

Optional Machine
Section
Underscore allowed

Required Clock
subsection

Required States
subsection
State variables

State assignments

Unconditional
transition

SMF for EXAMPLE2 (Part 1 of 2)

A+PLUS User Guide

S1:

S2:

S4:

S5:

S6:

S7:

S8:

ENDS$

IF CW * /HS THEN S3 <@——————— Conditional transition

IF CW * HS THEN S2
IF CCW */HS THEN S7
IF CCW * HS THEN S8

IF CW THEN S3
IF CCW THEN S1

IF CW #*/HS THEN S5
IF CW * HS THEN S4
IF CCW * /HS THEN S1
IF CCW * HS THEN S2

IF CW THEN S5
IF CCW THEN S3

IF CW * /HS THEN S7
IF CW * HS THEN S6
IF CCW */HS THEN S3
IF CCW * HS THEN S4

IF CW THEN S7
IF CCW THEN S5

IF CW * /HS THEN S1
IF CW * HS THEN S8

IF CCW * /HS THEN S5

IF CCW * HS THEN S6

IF CW THEN S1
IF CCW THEN S7

-

statements

Outputs subsection
optional (not used
here)

Required End
statement

Figure SM-8. SMF for EXAMPLE2 (Part 2 of 2)

State Machine Entry

SM-25

SM-26

Step 6 — Save the SMF:

Save the file under the legal DOS filename EXAMPLE2.SMF and
return to DOS.

Step 7 — Submit the SMF to the ADP:

Submit the file to the ADP as described in Step 7 of Example 1, but
press Y (Yes) at the <F7> LEF Analysis prompt. Figure SM-9 shows
the Logic Equation File (LEF) generated by the ADP after
EXAMPLE2.SMF has been converted into an ADF, translated,
expanded, minimized, and analyzed by the LEF Analyzer.

Step 8 — Program the EPLD:

Program the EPLD as described in Step 8 of Example 1.

This concludes the second sample session.

A+PLUS User Guide

Your Name

Your Company

9/30/87

1

A

EP900

Stepper Motor Controller

<SMV Version information>

Input files : EXAMPLE2.ADF

ADP Options: Minimization = Yes, Inversion Control = No, LEF Analysis = Yes

<LEF Version information>
OPTIONS: TURBO = OFF, SECURITY = OFF
PART:
EP900
INPUTS:
CW, CCW, HS, CLK
OUTPUTS:
PH1, PH2, PH3, PH4
NETWORK:
CLK = INP(CLK)
CW = INP(CW)
CCW = INP(CCW)
HS = INP(HS)

%

The primitive JOJF was minimized to TOTF

%

PHI1, PH1 = TOTF(PH1,.1, CLK, GND, GND, VCC)

%

The primitive JOJF was minimized to TOTF

%

PH2, PH2 = TOTF(PH2.j.3, CLK, GND, GND, VCC)

%

The primitive JOJF was minimized to TOTF

%

PH3, PH3 = TOTF(PH3.j.5, CLK, GND, GND, VCC)

%
The primitive JOJF was minimized to TOTF

%
PH4, PH4 = TOTF(PH4.j.7, CLK, GND, GND, VCC)

Figure SM-9. EXAMPLE2.LEF (Part 1 of 2)

State Machine Entry SM-27

SM-28

EQUATIONS:
PHA4.j.7

PH3.j.5

PH2.j.3

PH1.,j.1

END$

Figure SM-9.

I T S S S S T e

+H+++ 40

PH4' * PH1 * PH2' * CW * HS'

PH4' * PH1 * PH2' * PH3' * CW

PH4 * PH1' * PH2 * PH3' * CW

PH4' * PHI1' * PH2 * CW' * HS' * CCW
PH4' * PH1' * PH2 * PH3' * CW' * CCW
PH4 * PH1 * PH2' * PH3' * CW' * CCW;

PH3' * PH1' * PH2' * PH4'

PH3' * PHI1' * PH4' * CW

PH3' * PH2' * PH4' * CCW * CW'

PH3' * PH1' * PH2 * HS' * CW

PH3 * PH1 * PH2' * PH4' * CW

PH3' * PH1 * PH2' * CCW * HS' * CW'
PH3 * PH1' * PH2 * PH4' * CCW * CW'

PH2' * PH3' * PH4 * CW * HS'

PH2' * PH1' * PH3' * PH4 * CW

PH2 * PH1' * PH3 * PH4' * CW

PH2' * PH3 * PH4' * CCW * CW' * HS'
PH2' * PH1' * PH3 * PH4' * CCW * CW'
PH2 * PH1' * PH3' * PH4 * CCW * CW/;

PH1' * PH2' * PH3' * PH4'

PH1' * PH2' * PH4' * CW

PH1' * PH2' * PH3' * CW' * CCW

PHI' * PH3 * PH4' * CW * HS'

PH1 * PH2' * PH3' * PH4 * CW

PHI' * PH3' * PH4 * CW' * HS' * CCW
PH1 * PH2' * PH3 * PH4' * CW' * CCW;

EXAMPLE2.LEF (Part 2 of 2)

A+PLUS User Guide

Example 3

Before going through this example, be sure to read Design Guidelines
and State Machine File Format.

The third example, called EXAMPLE3, describes a gray code counter
and display decoder. Such counters may be used for applications in
which the decoded outputs of the counter drive circuitry that requires
high reliability. In contrast to binary counters, only one bit changes per
transition in gray code counters.

The EXAMPLES circuit is a four-bit gray counter driving a seven-
segment decoder for display. The outputs of the counter are available
on the EPLD pins. This design uses a state machine as well as a truth
table. Figure SM-10 shows a state diagram for EXAMPLES3.

Step 1 — Define Inputs and Outputs:

The design has two inputs: hold, g4clk

The outputs are the state variables, as well as outputs to a pin:
ql, q2, q3, q4

The design also has seven segment decode outputs:

Saa, Sbb, Scc, Sdd, See, Sff, Sgg

Step 2 — Draw a State Diagram:

Figure SM-10 shows the state diagram for the gray code counter. Each
state contains the following information:

= State Name

. State Assignment
" Decoder Output

State Machine Entry SM-29

State G14

State G1
0001

State G4
0110

/hold

State G8
1100

State G7
0100
I

Figure SM-10. State Diagram for EXAMPLE3

SM-30 A+PLUS User Guide

Step 3 — Define State Variables and Assign State Values:

As indicated above, the outputs are also the state variables:
STATES: [ql q2 ¢3 q4]

State assignments are as follows (they are also shown in Figure
SM-10):

GO
G1
G2
G3
G4
G5
Gé6
G7
G8
G9
G10
G11
G12
G13
G14
G15

e p— — o p— o — p— o— po— p— f— o
bk ok ek pd pk ek pd el O OO OO OO
COOCO O i fmu puk i pd pd ek e DO OO
CS Ot pd pd el OO OO ok ok ok pd © D
C ik ek OO e ek SO ok ok SO ek ek D
SV S o G B VS G S SR S

Step 4 — Assign the Segments:

The assignments for the display decoder are as follows:

aa

bb ff
88

cc ee
dd

State Machine Entry SM-31

SM-32

Step 5 — Create a Truth Table:

The truth table is external to the state machine. However, it may be
described in the SMF in the optional Truth Table Section (see State
Machine File Format). The truth table for EXAMPLES is shown below
(note that 0 indicates that a segment is lighted, 1 that it is not; this
indicates the direct connection to the common anode displays where
all anodes are tied to VCC):

aa bb

0
@
0
)
Ney
=
)
)
o
o
=
oQ
]

T TAB: ¢4
%0% 0
%1%
%2 %
%3 %
%4 %
%5 %
% 6 %
%7 %
% 8 %
%9 %
%A %
% b %
% C %
% d %
%E %
%F %

bk b b b ek b = O O OO OO O
=== T S Y N N I =)
OO = == OO0 OO = OO
O P OO~ OOMMFOOR=O
OCOHH O OO OODOO—-OO O
OO OO OO0 OO0~k OO
OO O OO0 OROF~=MFOOO
—mo0O0O—~—~0O~0OO0OROO~O &
—_ O OO0 0000000 =O
O = 0O 000, OO0 O
QOO OO0 O0OO0O R OO OOO =

Step 6 — Convert the Information into an SMF:

Figure SM-11 shows the SMF generated from the information
determined so far:

I You may specify the part name in the Part Section of the
SMF (in this case, EP600) or type AUTO.

Step 7 — Save the SMF:

Save the file under the legal DOS filename EXAMPLE3.SMF and
return to DOS.

A+PLUS User Guide

Step 8 — Submit the SMF to the ADP:

Submit the file to the ADP as described in Step 7 of Example 1, but
press Y (Yes) at the <F7> LEF Analysis prompt. Figure SM-12
shows the Logic Equation File (LEF) generated by the ADP after
EXAMPLE3.SMF has been converted into an ADF, translated,
expanded, minimized, and analyzed by the LEF Analyzer.

Step 9 — Program the EPLD:

Program the EPLD as described in Step 8 of Example 1.

This concludes the third sample session.

State Machine Entry SM-33

Your Name
Your Company
9/30/87

1

A
EP600
4 Bit Gray Code UP Counter

OPTIONS: TURBO = OFF, SECURITY = OFF
PART: EP600

INPUTS: hold, gdclk

OUTPUTS:
% gray code counter outputs; ql is least significant bit %
ql, 92, q3, ¢4
% 7 segment decode outputs %
Saa, Sbb, Scc, Sdd, See, Sff, Sgg

NETWORK:
% combinatorial outputs for the 7 segment display %

Saa = CONF(aa, VCC)
Sbb = CONF(bb, VCC)
Scc = CONF(cc, VCC)
Sdd = CONF(dd, VCC)
See = CONF(ee, VCC)
Sff = CONE(ff, VCC)
Sgg = CONF(gg, VCC)

MACHINE: Gray4
% this defines the State Machine %

CLOCK: g4clk
STATES: [q4
GO [

w
p—

—_—_—_-0 0000000

= e = OO O OO
o—oooo'—u—-u—w—-oo.t%
—_—_O O OO~ OL
et e e e e e e o b b b

[
[
[
[
[
G6 [
[
[
[
[

Figure SM-11. SMF for EXAMPLE3 (Part 1 of 3)

SM-34 A+PLUS User Guide

Gl11 [1 1 1 o0]
G12 [1T 0 1 0]
G13 [1 0 1 1]
Gl14 [1T 0 0 1]
G15 [1 0 0 0]

% state transition definitions %
% in all cases ELSE HOLD is implicit %
GO:

IF /hold THEN G1
Gl:

IF /hold THEN G2
G2:

IF /hold THEN G3
G3:

IF /hold THEN G4
G4:

IF /hold THEN G5
GS5:

IF /hold THEN G6
G6:

IF /hold THEN G7
G7:

IF /hold THEN G8
G8:

IF /hold THEN G9
G9:

IF /hold THEN G10
Gl10:

IF /hold THEN G11
Gl11:

IF /hold THEN G12
Gl12:

IF /hold THEN G13
G13:

IF /hold THEN G14
G14:

IF /hold THEN G15
Gl15:

IF /hold THEN GO
% 1 segment display decoder; note: 0=> segment ON %

Figure SM-11. SMF for EXAMPLE3 (Part 2 of 3)

State Machine Entry SM-35

% segment assignment:
aa
bb ff

88
cc ee

dd
%
% inputs of truth table outputs of truth table %
T TAB: ¢4 aa bb cc dd ee ff gg ;

% 0 %
% 1 %
% 2 %
% 3 %
% 4 %
% 5 %
% 6 %
% T %
% 8 %
% 9 %
% A %
% b %
% C %
% d %
% E %
% F %

ik ek bk e ek b e D OO OO O OO
OO0 OO OOOOO -

OO0 O R R R RERR=,OOOO T,
oo»—w—w-a»—-oooo»—w—u—»—oo',%
O~ OO, P OOR~OO~~O L
OO~ OO0 0OO0O~O OO
OO~ 00000~ OOO~r—OQ
OO0 0000~ OO, OOO
—F 0000 HOROO~OOMO
— I, O, 000000000 =O
—_,—,- O R, R OO0, L, OO0 OO

END$

Figure SM-11. SMF for EXAMPLE3 (Part 3 of 3)

SM-36 A+PLUS User Guide

Your Name

Your Company

9/30/87

1

A

EP600

4-Bit Gray Code Up Counter

<SMV Version information>

Input files : EXAMPLE3.ADF

ADP Options: Minimization = Yes, Inversion Control = No, LEF Analysis =
Yes

<LEF Version information>

OPTIONS: TURBO = OFF, SECURITY = OFF
PART:
EP600
INPUTS:
hold, gdclk
OUTPUTS:
ql, q2, q3, g4, Saa, Sbb, Scc, Sdd, See, Sff, Sgg
NETWORK:
gdclk = INP(gdclk)
hold = INP(hold)

%

The primitive JOJF was minimized to TOTF

%

ql, q1 = TOTF(ql.j.1, g4clk, GND, GND, VCC)

%

The primitive JOJF was minimized to TOTF

%

q2, @2 = TOTF(q2.j.3, g4clk, GND, GND, VCC)

%

The primitive JOJF was minimized to TOTF

%

q3, @3 = TOTF(q3.j.5, g4clk, GND, GND, VCC)

%
The primitive JOJF was minimized to TOTF

%
q4, ¢4 = TOTF(q4.j.7, g4clk, GND, GND, VCC)

Figure SM-12. EXAMPLE3.LEF (Part 1 of 3)

State Machine Entry SM-37

Saa
Sbb
Sce
Sdd
See
Sff

Sgg

EQUATION

44

+ + 0

ff

F 0+ 0

+ 4+ 40

cC

+ 4+

bb

+ + 0

aa

Figure SM-12.

SM-38

CONF(aa, VCC)
CONF(bb, VCC)
CONF(cc, VCC)
CONF(dd, VCC)
CONF(ee, VCC)
CONF(ff, VCC)

CONF(gg, VCC)

Qu o000 ononow

q4' * q3' * q2'
q4' * q2' * q1’
q4 * q3' * q2 * ql;
q4 * q3' * q2'
q4' * q2' * ql
qd' * q3 * ql
q4 * q2 * ql;

q4 * q3' * q2
g4 * q3' * ql'
q4' * q3' * ql;

q4' * q3 * ql’

q4 * q3 *ql

q4' * q3' * q2' * ql
q4 * q3' * q2* ql;

q4' * q3 * ql'
q4' * q2 * ql
q4' * q3 * q2
q4 * q3 *q2' * ql;

qd' * q3' * q2
q3' * q2 * ql
q4' * q3 * q2' * ql;

q3 * q2 * ql’
q4' * q3' * q2' * ql
q4 * q3' * q2 * ql;

1]

q4 * q3' * q2' * q1' * hold’
q4' * q3 * q2' * q1' * hold’;

+

q3' * q4' * q2 * q1' * hold'
q3 *q4 * q2 * q1' * hold’;

+

EXAMPLE3.LEF

(Part 2 of 3)

A+PLUS User Guide

q2.j.3

ql.j.1

END$

+ 4+ 40

A+ A+ o+

q2' * q4' * q3' * q1 * hold'
q2 * q4 * ¢3' * q1 * hold';
q2 * g4' * q3 * ql * hold'
q2' * q4 * q3 * q1 * hold’;

ql' * q4' * q3' * q2' * hold’
ql * g4 * q3' * q2' * hold'
ql * g4’ * q3 * ¢2' * hold’
ql * q4' * q3' * q2 * hold'
ql' * q4 * q3' * g2 * hold'
ql' * q4 * q3 * q2' * hold'
ql' * g4' * q3 * g2 * hold’
ql * g4 * q3 * q2 * hold’;

Figure SM-12, EXAMPLES.LEF

State Machine Entry

(Part 3 of 3)

SM-39

Design Guidelines

SM-40

The following guidelines apply to State Machine Entry:

A State Machine File must have a Part Section, Inputs Section,
Outputs Section, and End Statement. All other sections are
optional.

The state machine clock that appears in the required Clock
subsection of the Machine section is the actual node name that
feeds the state machine register. (A state machine register is a
group of flipflops whose outputs are the state variable values.) In
a synchronous clock, this node is typically the left-hand side of an
INP statement. Asynchronous clocks may be driven by a pin or
by logic.

If your state machine design requires an asynchronous clock that
is driven directly from a pin, you must use a CLKB Primitive in the
Network Section. (Refer also to Altera Primitive Library in the
A+PLUS Reference Guide.)

An asynchronous clear input resets all state variable values to
zero. The name of the clear signal is typically the left-hand side of
an equation that contains one product term.

Assigning pin numbers to both inputs and outputs may speed
the fitting process.

Every output can be an input to another state machine. (Multiple
state machines can be described in a single SMF.)

State names, state variable names, and state machine names are
global and must be unique.

State variables never require an 1/O primitive statement in the
Network Section; it is generated automatically.

State variables may appear in the Outputs Section of the

Declarations Section if you wish to use state variables as design
outputs. (Pin outputs and feedbacks may have identical names.)

A+PLUS User Guide

. State variables are interpreted as feedbacks from a macrocell;
therefore, they may not appear in the Outputs subsections that
follow Transitions subsections.

" Signal names in Outputs subsections (which follow Transitions
subsections) are treated in the same manner as signals on the
left-hand side of Boolean equations. Each signal name should
be used at least once as an input to an I/O primitive or on the
right-hand side of a Boolean equation. Signal names are not
interpreted as feedbacks or pin outputs; therefore, they may not
appear on the left-hand side of 1/O primitives and they cannot be
state variable names. Figure SM-13 illustrates the use of the
States, Transitions, and Outputs subsections in a sample SMF.
Figure SM-14 shows the corresponding ADF.

= Altera EPLDs always power up with all state variables at logic
zero, i.e., [0,0, 0 ... 0]. If your design depends on a specific
starting state, you must know the power-up state of the device
register. If the power-up state is not defined, the next state is
undefined. You must specify the power-up state or make sure
that your design goes to a known state after power-up.

= Auxiliary variables defined through Boolean equations or
feedback from macrocells can appear within expressions
describing conditional output and/or transitions from a state
machine (e.g., in the Transitions and Outputs subsection of the
Machine Section or inputs to a truth table).

= Transitions are evaluated in the order in which they are entered,
i.e., the first transition has precedence over the second, the
second over the third, etc. If no transitions are specified, the next
state is the current state.

" A+PLUS offers two special features: (1) Turbo-Bit and (2)
Security Bit.

(1) The Turbo-Bit is a control bit for choosing speed and
power characteristics of an EPLD. It can be set to ON or
OFF in the Options Section of the SMF. If the Turbo-Bit
status is not specified, it will default to ON. Before
programming an EPLD, LogicMap also allows you to toggle
the Turbo-Bit ON or OFF. (Note: the BUSTER and EP310
parts do not support the Turbo-Bit option. LogicMap will
ignore Turbo-Bit information entered for these EPLDs.)

State Machine Entry SM-41

(2) The Security Bit prevents a device from being interrogated
or inadvertently reprogrammed. It can be set to ON or OFF
in the Options Section of the SMF. If the status of the
Security Bit is not specified, it will default to OFF. Before
programming an EPLD, LogicMap prompts you to indicate
whether you wish to turn the Security Bit feature ON or
OFF.

Table SM-2. Legal Characters for State Machine Names

Legal State
Machine Name
Characters

OCONONPWN~ONY X £

£E<CHLAOUVOZEI - R—~—~IQMmMTOW>
- 0T OB E =R =T o A0 O N X

SM-42 A+PLUS User Guide

PART: EP310
INPUTS: INpl, INp2, CLK
OUTPUTS: OUTpl, OUTp2, OUTp3

NETWORK:
OUTpl = CONF(O161,)
OUTp2, FB1 = RORF(0261,CLK,,,)

OUTp3, FB2
EQUATIONS:

AO3 = FB1 * FB2 + O161 * 0261;
MACHINE: 61

CLOCK: CLK

RORF(AO3,CLK,,,)

—

(=R e]
e b e i

SO:
IF INp1 THEN S1
S3
OUTPUTS:
IF /INp1 THEN 0161
S1:
S2
OUTPUTS:
0261
S2:
S3
OUTPUTS:
IF /INp2 THEN 0161
0261
S3:
SO
END$

Figure SM-13. Sample States, Transitions, and Outputs
Subsections

State Machine Entry SM-43

<SMV Version information>
PART: EP310

INPUTS:
INp1, INp2, CLK

OUTPUTS:
OUTpl, OUTp2, OUTp3

NETWORK:

INpl = INP(INpl)

INp2 = INP(INp2)

CLK = INP(CLK)

OUTpl = CONF(O161,)

OUTp2, FB1 = RORF(0261,CLK,,,)

OUTp3, FB2 = RORF(AO3,CLK,,,)
ZOO'S for State Machine "61"

Z{(’) = NORF(q0.d, CLK, GND, GND)
ql = NORF(ql.d, CLK, GND, GND)
EQUATIONS:

AO3 = FBI * FB2 + 0161 * 0261;

% Boolean Equations for State Machine "61" %
% Current State Equations for "61" %

SO = q0' * ql';
S1 = q0'* ql;
S2 = q0 *ql;
S3 = q0*ql}
% SV Defining Equations for State Machine "61" %
q0d" = Sl
+ SO.n;
qld = Sln
+ S2.n;

% Next State Equations for State Machine "61" %
Sl.n = (SO * INpl);

S2.n = (S1);
SO0.n = (S3);
% Output Equations for State Machine "61" %
0161 = (S2 * INp2)
+ (SO * INpl);
0261 = (S2)
+ (S1);
END$

Figure SM-14. ADF Output for Figure SM-13

SM-44 A+PLUS User Guide

State Machine File (SMF) Format

A State Machine File is divided into several required and optional
sections. The format and requirements of each SMF section are
described below. Examples of each section are given in Sample
Sessions and Design Guidelines (above). Figure SM-15 provides a full
Backus-Naur Form (BNF) description of the SMF syntax. (Refer to
Appendix C in the A+PLUS Reference Guide for information on
the Backus-Naur Form.) Note that the SMF syntax is similar to the
syntax of the Altera Design File (ADF).

State Machine Entry SM-45

Keywords

White

SM-46

The keywords OPTIONS:, PART:, INPUTS:, OUTPUTS:,
NETWORK:, EQUATIONS:, MACHINE:, and T_TAB: must
always be the first word in the line in which they appear. (Do not enter
comments, tabs, or blank spaces before these keywords.)

The keywords which appear within the Machine Section, namely,
CLOCK:, CLEAR:, STATES:, and OUTPUTS:, may be preceded
by blank spaces or tabs.

Space and Comments

White space is defined as blank spaces, tabs, carriage returns, and line
feeds. White space may be inserted between syntax elements to
enhance readability, except in the following cases:

= Within any name

. Between <prefix> and <name> or <name> and <postfix> in
the Equations Section

. Between <prefix> and <expression> or <expression> and
<postfix> in the Equations Section

= Between <prefix> and <state var name> Or <state var
name> and <postfix> in (keyword format) state definitions in the
States subsection

. Within a state label (i.e., between <name> and ':') in the
Transitions and Outputs subsections

. Before keywords, as described in the preceding section

Comments must be enclosed by percent symbols (%). They may
contain any printable character except the delimiter %. They may be
inserted wherever white space is allowed, except within the Header
Section of a file.

A+PLUS User Guide

Header Section

The optional Header Section of the State Machine File provides design
documentation. This section has several important uses and

restrictions:
= If it is present, it must be the first section in the file.
L] It is included in the header of the Altera Design File, the

Utilization Report, and the JEDEC File.
L] Any printable character except the asterisk (*) is allowed.
" It may include EOL (end-of-line) characters.

= It is terminated by either the OPTIONS: or PART: keywords,
which A+PLUS recognizes as the start of the Declarations
Section.

Fields in the Header Section appear in the following order, with one
item per line. The maximum character count for each field is indicated in
parentheses.

Designer (48)

Company (60)

Date (24)

Number (24)

Revision (24)

EPLD (10)

Comment (512)

Any other information (may be more than one line)

ONoOrOD

Declarations Section

The Declarations Section specifies the EPLD used for the design,
input and output signal destinations, and optional pin assignments. It
also allows you to disable/enable the Turbo-Bit (a control bit for
choosing speed and power characteristics of an EPLD) and the
Security Bit (which prevents a device from being interrogated or
inadvertently reprogrammed.)

State Machine Entry SM-47

SM-48

The Declarations Section contains subsections that are referred to as
the Options, Part, Inputs, and Outputs sections. Each section is
described below.

Options Section

The Options Section is optional. It is identified with the keyword
OPTIONS:, followed by either or both of the following option
specifiers:

" TURBO, indicating Turbo-Bit. The values are ON (the default) or
OFF. If ON or OFF is not specified, the Turbo-Bit defaults to ON.
(The BUSTER (EPB1400) and EP310 parts do not support the
Turbo-Bit option. LogicMap will ignore any Turbo-Bit information
entered for these EPLDs.)

= SECURITY, indicating the Security Bit. The values are ON or
OFF (the default). If ON or OFF is not specified, the Security Bit
defaults to OFF.

Part Section

The Part Section is required. It is the first section of the SMF if no
Header or Options Section is present. It consists of the keyword
PART:, followed by a target EPLD part number or the term AUTO to
specify automatic part selection. It is terminated by the INPUTS:
keyword.

If automatic part selection is specified, the State Machine Converter
assumes that a part with T flipflops is available and the ADP
automatically chooses the part most likely to fit your design. For parts
that don’t have T flipflops (EP310, EP320, EP1210), you should
specify the part name.

s Automatic part selection will not be successful if you
specify pin assignments, or if there are too many inputs,
outputs, or macrocells in the design.

A+PLUS User Guide

Inputs Section

The Inputs Section is required. It consists of the keyword INPUTS:,
followed by a list of input signals, including optional pin assignments.
Input signal names may contain up to eight characters, including any
printable character except percent symbol (%), comma (,), equal
symbol (=), at-symbol (@), or left and right parentheses (()). You may
include specific pin assignments by appending an at-symbol (@) plus a
one- or two-digit pin number to any input name on the list. (In the
EP1800G, pin numbers are specified with an @-symbol plus one letter
and a one- or two-digit number.) This section must follow the Part
Section. It is terminated by the OUTPUTS: keyword. Example:

Iz 1. If you use an asterisk (*) in an input or output pin
name, it will be converted into a tilde (~) in the JEDEC file
generated by the ADP. You must ensure that this
conversion will not create duplicate pin names (for
example, if you use both * and ~ when naming pins).

2. The ADP creates internal node names that contain
periods (.). User-assigned pin names that contain
periods may occasionally conflict with these node names
and cause unpredictable results.

3. The Functional Simulator ignores all user-defined pin
names that contain periods (periods are allowed only for
referencing internal nodes of /O primitives).

Outputs Section

The Outputs Section is required. It consists of the keyword
OUTPUTS:, followed by a list of output signals, including optional pin
assignments. Output pin names and numbers have the same format as
in the Inputs Section. The Outputs Section must follow the Inputs
Section. It is terminated by the Network, Equations, or Machine
sections.

State Machine Entry SM-49

Network Section

The Network Section is optional. It consists of the keyword
NETWORK:, followed by one or more primitive statements. The
Network Section is terminated by either the Equations or Machine
section.

I Refer to Network Section Requirements in Boolean
Equation Entry (A+PLUS User Guide) for detailed
guidelines on using primitive statements. See also Altera
Primitive Library in the A+PLUS Reference Guide
for a description of each primitive.

Equations Section

The Equations Section is an optional section that allows you to include
Boolean equations in your state machine design. It consists of the
keyword EQUATIONS:, followed by zero or more Boolean equations.
(For detailed information on using Boolean equations, see Boolean
Equation Entry in the A+PLUS User Guide.) The Equations
Section is terminated by the MACHINE: keyword. Note that entire
equations may be substituted into the right-hand sides of other
equations by substituting intermediate variables.

Machine Section

SM-50

The Machine Section specifies the state machine, the clock that
synchronizes the state machine, and the state variables. It also allows
you to specify optional state transition and output definitions, and an
asynchronous clear input to the state machine. Multiple state machines
may be described in a single SMF.

The Machine Section consists of the keyword MACHINE:, followed
by the name of the state machine. The name of the state machine is
followed by optional and required subsections which are referred to as
the Clock, Clear, States, Transitions, and Outputs subsections. (Note
the distinction between the Outputs subsection of the Machine

A+PLUS User Guide

Section and the Outputs Section of the Declarations Section.) The
name of the state machine may contain up to 32 alphanumeric
characters or underscores. Each subsection is described below.

Clock Subsection

The required Clock subsection specifies the clock that synchronizes
the state machine. It consists of the keyword CLOCK:, followed by the
a clock name containing up to eight alphanumeric characters. The clock
name in a state machine is the name of the node feeding the state
machine register. In a synchronous clock, this node is typically the left-
hand side of an INP statement. The Clock subsection is terminated by
the CLEAR: or STATES: keyword.

1€ If a state machine design requires an asynchronous clock
that is driven directly by a pin, use a CLKB Primitive in
the Network Section. (Refer to Appendix A in the
A+PLUS Reference Guide.)

Clear Subsection

The optional Clear subsection allows you to specify an asynchronous
clear input to the state machine. (The clear input resets all state variable
values to zero.) It consists of the keyword CLEAR:, followed by a clear
signal name containing up to eight alphanumeric characters. The clear
signal in a state machine is the name of the node feeding the
asynchronous clear input of the state machine register.

To implement an Active Low clear, use a NOT statement to invert the
clear signal in the Network Section. For example:

State Machine Entry SM-51

SM-52

INPUTS: nSIGX, SIGY, SIGZ
% nSIGX is an active low signal %

NETWORK:
nSIGX = INP(nSIGX)
SIGX = NOT(SIGX) % invert the node %

CLEAR: SIGX % implements Active Low clear %

States Subsection

The States subsection is required. It consists of the keyword
STATES:, followed by a list of state variable names in square brackets
([1). After the state variable names are listed, the value of each state
variable must be assigned for each state. Each state name and state
variable name may contain up to eight alphanumeric characters. State
variable assignments may be given in one of two formats: positional or
keyword format.

. Any one state machine can have a maximum of 16 state variables.

L] The combination of state variable values that define a state must
be unique within a given state machine.

. Each state variable corresponds to the feedback output of a
flipflop. Therefore, the number of state variables defined is equal
to the minimum number of flipflops (and hence macrocells)
required to implement the current state machine.

Positional state variable format
This format consists of a state name, followed by a list of state variable
values enclosed in square brackets. The values are 0, 1, or X (don'’t

care). The values for each state are assumed to be in the same order as
those in the list of state variables following the STATES: keyword.

A+PLUS User Guide

I Since the combination of state variable values must be
unique for each state, you should exercise caution when
assigning X (don't care) as a state variable value.

Keyword state variable format

This format consists of a state name, followed by a list of state variable
names (complemented or uncomplemented) enclosed in square
brackets. The list corresponds to a product term that is true when the
current state machine is in the state presently being defined. Don't
Care variables are left out. This format may span lines.

s To prevent confusion between these two formats, state
variables may not be named 0, 1, or X.

The States subsection is terminated with one of the following: the
Transitions and Outputs subsections, the next Machine Section, a
Truth Table Section, or the END$ statement.

Transitions and Outputs Subsections

The Transitions and Outputs subsections are optional. They contain
state transition and output definitions that correspond to each state.

u All states for the current state machine must have their transitions
and outputs described in these subsections.

= The Transitions subsection for a state begins with the source
<state name> followed immediately by a colon (:). It does not
have an identifying keyword. The Transitions subsection always
precedes the optional Outputs subsection for the state.

L] Each transition is followed by the corresponding output(s) (i.e.,
destination(s)) of the state, which is identified with the
OUTPUTS: keyword.

L State outputs are optional. If a state has no outputs, the
OUTPUTS: keyword must not be present.

" The Transitions and Outputs subsections terminate with the next
Machine Section, Truth Table Section, or the END$ statement.

State Machine Entry SM-53

SM-54

Transition Syntax

Transition definitions may be given in three forms: conditional
transitions, unconditional transitions, and case statements.

1 nditional transitions:
Conditional transitions are entered in the following format:

state(:

IF condition THEN next statel
% ELSE is implied %

IF condition THEN next state2

IF condition THEN next stateN
% for N clauses %

The requirements for conditional transitions are as follows:

= Only the first IF-THEN clause is required.

L] Each condition must be a Boolean expression consisting of input
variables, intermediate variables, and/or names of states from
other state machines on which the current transition depends.

= The <state name> following THEN represents the next state of
the current machine if the associated condition is true.

= A group of IF-THEN clauses is terminated by an unconditional
transition, the start of the next set of state transition definitions,
the OUTPUTS: keyword, the next Machine or Truth Table
section, or the END$ statement.

(2) Unconditional transitions:
The destination state of an unconditional transition is entered after the
state name and colon that identify the source state or after the /ast

conditional or case statement transition. For example:

state(:
statel

A+PLUS User Guide

(3) Case statement transitions:
Case statement transitions are entered in the following format:

state(:
CASE
conditionl : statel
condition2 : state2
condition3 : state3

conditionN : stateN
ENDCASE

The requirements for case statement transitions are identical to those
for conditional (IF-THEN) transitions (described above).

Output Syntax

Signal names in the Outputs subsection are treated in the same
manner as signals on the left-hand side of Boolean equations. These
names may be used as inputs to 1/0 primitives or may appear on the
right-hand side of Boolean equations. They are not interpreted as
feedbacks or pin outputs; therefore, they may not appear on the left-
hand side of I/O primitives. They may not be state variable names.

Output definitions may be conditional or unconditional (case statement
output definitions are not allowed):

(1) Conditional outputs have the same syntax as conditional
transitions, except for the state name, which is replaced by the
output signal name. Outputs are not mutually exclusive, i.e.,
ELSE is not implied. All conditional outputs are evaluated
whenever the state with which they are associated occurs.

(2) Anunconditional output is the name of the signal that is asserted

in the current state. If a signal is not asserted, it is set to zero for
that state.

State Machine Entry SM-55

Truth Table Section

SM-56

The Truth Table Section is optional. Multiple truth tables may be
described in a single SMF. It is identified by the T_TAB: keyword.

. Each truth table requires its own T_TAB: keyword.

= Each Truth Table Section terminates with the next T_TAB: or
MACHINE: keyword, or with the END$ statement.

. A truth table output is interpreted as a Boolean variable, i.e.,
wherever the left-hand side of a Boolean equation is found, a
truth table output may be found.

- All names are global to allow truth tables to be automatically
linked.

L] Legal values for a truth table are:
1=> TRUE
0 => FALSE
X => DON'T CARE
The default value for table entries is FALSE (0).

Truth tables are entered in the following format:

T_TAB: input declarations : output declarations;
rowl inputs : rowl outputs;
row2 inputs : row2 outputs ;

rowN inputs : rowN outputs;
% for an N-row truth table %

The input and output declarations are variable names defined
elsewhere in the SMF. These declarations contain the names of the
outputs of and inputs to other Boolean or non-Boolean resources. (A
truth table is considered to be a Boolean resource.)

A+PLUS User Guide

End Statement

The End Statement terminates the SMF. It consists of the string:

END$

State Machine Entry SM-57

SM-58

<smf> ::= [<header>] <declarations> [<network>] [<equations>] {<machine> |
<truth table>} END$'

<header> ::= <header char>:0:48 <EOL>
<header char>:0:60 <EOL>
<header char>:0:24 <EOL>
<header char>:0:24 <EOL>
<header char>:0:24 <EOL>
<header char>:0:10 <EOL>
<header char>:0:512 <EOL>
{{<header char>} <EOL> {{<header char>} <EOL>}
<header char> ::= <tab> | <space> | <hex 21> | ... | <hex 29> | <hex 2B> |
<hex 2C> | ... | <hex 7E>
(i.e., any printable ASCII character except an asterisk (*))
<tab> ::= <hex 09>
<EOL> ::= <hex OD> <hex 0A>
<space> ::= <hex 20>

<declarations> ::= [<options>] <part> <inputs> <outputs>

<options> ::= 'OPTIONS:' <opt spec> {[',] <opt spec>} <EOL>

<part> ::= PART:' <part name> <EOL>

<inputs> ::= 'INPUTS:' <i/o list> <EOL>

<outputs> ::= 'OUTPUTS:' <i/o list> <EOL>

<opt spec> ::= <opt name> ['=' <opt value>]

<opt name> ::= "TURBO' | 'SECURITY'

<opt value> ::= 'ON' | 'OFF'

<part name> ::= 'EP310' | 'EP310D' | 'EP320' | 'EP320D' | 'EP600' | 'EP600D'
| 'EP600J' | 'EP610' | 'EP610D' | 'EP610J' | 'EP900" ['EPS00D" |
‘EP900J' | 'EP910' | 'EP910D' | 'EP910J' | 'EP1210' | 'EP1210D)' |
'EP1210J' | 'EPB1400' | 'EPB1400D' | 'EPB1400J' | 'EP1800" |
'EP1800J' | 'EP1800G’ | 'AUTO'

<i/o list> ::= <i/o name> {',’ <i/o name>}

<i/0 name> ::= <pin name> ['@’ <pin number>]

<pin name> ::= <pin char>:1:8

<pin char> ::= <any printable ASCII character except comma, %, @, =, (,)>

<pin number> ::= [<letter prefix>] <digit> [<digit>]

<letter prefix>::='A'|'B'| ... |'H'|'T|'K'| L'

(letter prefix allowed only in EP1800G pin numbers)
<digit> :='0"|'1"| ... |9

Figure SM-15. BNF Syntax for State Machine File
(Part 1 of 3)

A+PLUS User Guide

<network> ::= 'NETWORK:' <network list>
<network list> ::= <primitive equation> {<primitive equation>}
<primitive equation> ::= <parameters> '=" <primitive> '(' <parameters> ')’
<parameters> ::= <pin name> | <name> {',' <name>}
<name> ::= <name char>:1:8
<name char> ::= <digit> | <alphabet letter>
<alphabet letter> :='A"|'B'| ... |'"Z'|'a' |'b'| ... | 'Z'
<primitive> ::= <any Altera Primitive Library primitive name>
(e.g., CONF, INP, NORF)

<equations> ::= 'EQUATIONS:' {<logic equation>}

<logic equation> ::= <LHS> '=' <expression> ;' <EOL>

<LHS> ::= <prefix><name> | <name> | <name><postfix>
(no white space is allowed between <prefix>s<name> and
<name><postfix>)

<expression> ::= <name> | <prefix><expression> | <expression><postfix> |

<expression> <infix> <expression> | '(' <expression> ')’

(no white space is allowed between <prefix><expression> and
<expression><postfix>)

<prefix> ="/ | "V

<infix> ="+ | '*' | '#' | '&'

<postfix> ;="

<machine> ::= <state machine name> <clock> [<clear>] <states>
[<transitions and outputs>]

<state machine name> ::= 'MACHINE:' <name char> {<name char> |
' 'h1:32

<clock> ::= 'CLOCK:' <name>

<clear> ::= 'CLEAR:' <name>

<states> ::= 'STATES:' [' <state var name> {<state var name>}:1:15 '] <state
definition> <EOL> {<state definition> <EOL>}

<state var name> ::= (<name> except <state var value>)

(i.e., state variables may not be named 0, 1, or X)

<state definition> ::= <positional definition> | <keyword definition>

<positional definition> ::= <name> '[' <state var value> {<state var
value>}:1:15"7

<keyword definition> ::= <name> '[' <state var spec> {<state var spec>} ']'

Figure SM-15. BNF Syntax for State Machine File
(Part 2 of 3)

State Machine Entry SM-59

<state var spec> ::= <prefix><state var name> | <state var name> | <state var
name><postfix>
(no white space is allowed between <prefix><state var name> and
<state var name><postfix>)
<state var value> ::='0"|'1" | 'X'
<transitions and outputs> ::= {<state label> <state trans> [<state output>] }
<state label> ::= <name>"'
(no white space is allowed between <name> and <:>)
<state trans> ::= <conditional trans> | <case stmt trans> | <uncond trans>
<conditional trans> ::= 'TF' <expression> THEN' <name>
(ELSE is implied)
<case stmt trans> ::= 'CASE' <expression> ":' <name> {<expression> "'
<name>} 'ENDCASE'
<uncond trans> ::= <name>
<state output> ::= 'OUTPUTS:' (<conditional output> | <uncond output>
{<conditional output> | <uncond output>})
<conditional output> ::= TF' <expression> 'THEN' <name>
<uncond output> ::= <name>

<truth table> ::= 'T_TAB:' <input list> "' <output list> ;' <EOL>
<row of inputs> "' <row of outputs> ';' <EOL>
{<row of inputs> "' <row of outputs> ';' <EOL>}
<input list> ::= <name> {[','] <name>}
<output list> ::= <name> {[','] <name>}
<row of inputs> ::= <state var value> {[','] <state var value>}
<row of outputs> ::= <state var value> {[','] <state var value>}

'END$'

Figure SM-15. BNF Syntax for State Machine File
(Part 3 of 3)

SM-60 A+PLUS User Guide

State Machine Converter Messages

During SMF-to-ADF conversion, the State Machine Converter (SMV)
displays Error, Information, and Warning messages on screen. These
messages are prefixed with ***ERR-SMV-, ***INFO-SMV-, and
***WARN-SMV-, respectively. (Messages with other prefixes are
listed in A+PLUS Messages in the A+PLUS Reference Guide.)

Error messages indicate errors that must be corrected before file
conversion can continue. Warning messages indicated potential
problems; information messages simply report SMV processing status.

Many messages are preceded by a line of the following format, which
indicates the source of the message:

Line <SMF line #>: <text of SMF line>

State Machine Converter Messages Messages-1

Error

Messages

ERR-SMV-

CAUSE:

ACTION:

ERR-SMV-

CAUSE:

ACTION:

ERR-SMV-

CAUSE:
ACTION:

ERR-SMV-

CAUSE:

ACTION:

Messages-2

Can’t open input SMF

The State Machine Converter was unable to open your input
design file. It is possible that the file/pathname was spelled
incorrectly, the filename does not have the required
extension .SMF, the file is corrupted, or the disk is full or
corrupted. Also, there may not be enough memory available
to open the file.

Ensure that you have spelled the file and path names
correctly (including the extension .SMF), that you have
128K of disk space and enough memory to run A+PLUS, and
that the disk and SMF are not corrupted.

Can’t open output ADF

The State Machine Converter was unable to open the ADF
output file. It is possible that the disk is full or corrupted or
that available memory is insufficient to open the file.

Ensure that you have 128K of disk space, enough memory
to run A+PLUS, and that your disk is not corrupted. If you
are combining more than 3 SMFs, be sure that FILES=20
and BUFFERS=12 have been included in your
CONFIG.SYS file.

Can’t use Case stmt
<machine name>

in Outputs subsection:

You have used a Case statement in the Outputs subsection
of the specified state machine design.

Use only conditional (IF-THEN) and unconditional output
statements in the Outputs subsection (Case statements
may be used only in the Transitions subsection).

Can’t use state name in expression: <machine

name>

You have used a state name in an expression (i.e., the
condition in a conditional or Case statement transition) in the
Transitions and/or Outputs subsection of your design.

For each expression, use a Boolean expression consisting
of input variables, intermediate variables, and/or names of
states from other state machines on which the current
transition depends.

State Machine Converter Messages

ERR-SMV-

CAUSE:
ACTION:

ERR-SMV.

CAUSE:
ACTION:

ERR-SMYV-

CAUSE:

ACTION:

ERR-SMV.

CAUSE:
ACTION:

ERR-SMYV-

CAUSE:
ACTION:

ERR-SMV.-

CAUSE:
ACTION:

State Machine Converter Messages

Can’t use state output names in Inputs Section:
<machine name>

You have used the name of a state output in the Inputs
Section of your design file. .
Ensure that state outputs do not appear in the design’s
Inputs Section.

Can’t wuse
Section:

state output
<machine name>

names in OQutputs

You have used the name of a state output in the Outputs
Section of your design file.

Ensure that state outputs do not appear in the design’s
Outputs Section.

Can’t use state variable names
Subsection: <machine name>

in Outputs

You have used a state variable name in the Outputs
subsection as well as in a state definition in the States
subsection.

Ensure that state variables are unique within a single SMF.
(They may not appear in the design’s Outputs subsection.)

Duplicate state name: <name>

Your input SMF contains the state <name> in two or more
places.
Ensure that all state names are unique within a single SMF.

Duplicate state variable assignment: (<str>)

More than one state had the same state variable assignment
within a single state machine.

Ensure that all state variable assignments are unique within
a single state machine.

Duplicate state variable name: <name>

You have used the same state variable <name> in two or
more state machines.

Ensure that all state variable names are unique within a
single SMF.

Messages-3

ERR-SMYV-

CAUSE:
ACTION:

ERR-SMV-

CAUSE:

ACTION:

ERR-SMYV-

CAUSE:
ACTION:

ERR-SMV-

CAUSE:

ACTION:

ERR-SMV-
CAUSE:
ACTION:

Messages-4

Equation too long

Your input SMF contains an equation with more than 256
characters on a single line.
Split the equation over two lines.

I/O error -- temporary file

The disk is full or corrupted, or there has been a disk /O
error, so the State Machine Converter can’t use a temporary
file needed for design processing. Also, there may not be
enough memory available to open the file.

Ensure that you have 128K of disk space and enough
memory to run A+PLUS, that your DOS path includes the
current directory, that the diskette is not write- or read-
protected, corrupted, or not in the disk drive.

Illegal character in <name> section

An illegal or misplaced character was detected in the section
indicated.

Refer to Figure SM-16 in State Machine Entry, "BNF Syntax
for State Machine File,” for a precise description of the
characters which may be used in each section of the SMF.

Illegal Outputs subsection in <machine name>

The Outputs subsection contains an output statement
whose syntax does not conform to either of the two
permitted formats or the output signal name is not a node
name.

Ensure that output signal names are not state names or
state variable names. Use conditional (IF-THEN) or
unconditional output statement format in the Outputs
subsection (Case statements are not allowed).

Illegal pin assignment: (#,<pin name>)

The pin assignment string (#) for <pin name> contains an
illegal character or an unexpected End-of-File (EOF).
Specify pin assignments by appending an at-symbol (@)
plus a one- or two-digit number to the signal name. (In the
EP1800G, pin numbers are specified with an @-symbol plus
one letter and a one- or two-digit number.)

State Machine Converter Messages

ERR-SMV-

CAUSE:

ACTION:

ERR-SMYV-

CAUSE:

ACTION:

ERR-SMYV-

CAUSE:
ACTION:

ERR-SMV-

CAUSE:

ACTION:

ERR-SMV.-

CAUSE:
ACTION:

Illegal state machine clear name: (<code>,<node
name>)

The <node name> of the state machine Clear is too long or
contains an illegal character. (<code> is an internal
diagnostic code.)

Ensure that all node names contain eight or fewer
alphanumeric characters (all other characters are illegal).

Illegal state machine clock name: (<code>,<node
name>)

The <node name> of the state machine Clock is too long or
contains an illegal character. (<code> is an internal
diagnostic code.)

Ensure that all node names contain eight or fewer
alphanumeric characters (all other characters are illegal).

Illegal state machine name

The name of your state machine contains over 32 characters
or characters not permitted in state machine names.

Use a state machine name that contains 32 or fewer
alphanumeric characters and underscores (all other
characters are illegal).

Illegal Transition statement in <machine name>

The Transitions subsection contains a transition statement
whose syntax does not conform to any of the three permitted
formats or the destination of a transition is not a state or
node name.

Ensure that the destinations of transitions are not state
variable names. Use conditional (IF-THEN), unconditional,
or Case statement transitions in the format described in
State Machine Entry in the A+PLUS User Guide.

Internal error: <str>

There is an internal error.
Should you encounter this message, please contact Altera
Applications and describe the error text/number.

State Machine Converter Messages Messages-5

ERR-SMV-

CAUSE:
ACTION:

ERR-SMV-

CAUSE:

ACTION:

ERR-SMV-

CAUSE:

ACTION:

ERR-SMV-

CAUSE:

ACTION:

ERR-SMV-
CAUSE:
ACTION:

Messages-6

Mismatched parentheses in <machine name>

A left or right parenthesis is missing from an expression in
the Transitions or Outputs subsection of your design.
Ensure that an equal number of left and right parentheses
are present in each expression.

Missing <str> Section

An EOF was detected before the specified section (i.e.,
Inputs, Outputs, or Part) was found. These sections are
required.

Ensure that each SMF has the required sections listed
above. Remove blank spaces, tabs, and non-printing
characters that appear before the keywords for these
sections. Be sure to specify an EPLD name or AUTO in the
Part Section.

Missing destination state in <machine name>

A transition in the Transitions or Outputs subsection of your
design does not have a destination state (i.e., there is
nothing after the THEN in a conditional transition or after the
colon () in a Case statement or unconditional transition).
Add the name of a destination state to the transition
statement.

Missing expression in <machine name>

A conditional (IF-THEN) or Case statement transition in
your design is missing an expression (i.e., a Boolean
expression).

Ensure that conditional statements have the format “IF
<expression> THEN <name>" and Case statements
have the format “<expression> : <name>".

Missing node name in <machine name>

An expression in Transitions and/or Outputs subsection of
your design is missing a node name.

Check the expressions for syntax errors. For example, you
may have left a space between a node name and its
complement, or typed two operators in succession.

State Machine Converter Messages

ERR-SMV-

CAUSE:
ACTION:

ERR-SMYV-

CAUSE:

ACTION:

ERR-SMV.-

CAUSE:

ACTION:

ERR-SMV.-
CAUSE:
ACTION:

ERR-SMV-
CAUSE:
ACTION:

ERR-SMYV.

CAUSE:
ACTION:

Missing operator in <machine name>

An expression in the Machine Section of your design is
missing a binary operator (i.e., +, #, *, or &).

Insert one of the binary operators given above. (Note:
permitted NOT-operators are !, /, and *.)

Missing or illegal Clock subsection:
(<code>,<str>)

The SMV found <str> instead of the required CLOCK:
keyword on the first new line of text following the state
machine name. (<code> is an internal diagnostic code.)
Insert the Clock subsection as the first new line of text after
the state machine name. Ensure that there are no
characters other than spaces or tabs before the CLOCK:
keyword.

Missing or illegal States subsection

The SMV did not find the required STATES: keyword on the
first new line of text following the Clear (or if Clear is not
used, Clock) subsection.

Insert the States subsection. Ensure that there are no
characters other than spaces or tabs before the STATES:
keyword.

Missing state variable assignment

You have not provided state variable values for one or more
states in the States subsection.
Assign all state variable values in the States subsection.

Missing state variable name

You have not provided the name of one or more state
variables in the States subsection.
Declare all state variable names.

Network Section line too long

A line in the Network Section contains more than 256
characters, which is the maximum permitted on a single line.
Split the line into two or more lines.

State Machine Converter Messages Messages-7

ERR-SMV- Out of memory

CAUSE: Available memory is insufficient to complete the current
processing step. Other resident programs may be occupying
memory, such as RAM-disks, print spoolers, communication
packages, and keyboard enhancers. This message may
also occur if you have used the DOS Command (<F8>)
function and then re-invoked A+PLUS from the temporary
DOS environment (a duplicate copy is read into memory if
you reinvoke A+PLUS).

ACTION: Use the DOS command CHKDSK to check available
memory and disk space. Temporarily relocate other
programs to make enough memory available to run A+PLUS
and do not use background processes (e.g., Sidekick) when
running A+PLUS. If you have used <F8>, quit A+PLUS and
type EXIT to return to the “original” A+PLUS. If you are
processing a very large input file, you may wish to run the
ADP directly from DOS, which will increase the available
memory by approximately 70K (for details, see A+PLUS and
ADP Reference).

ERR-SMV- State variable definition must begin with '[":
(<code>,<str>)

CAUSE: The state variable definition field following the STATES:
keyword begins with <str> instead of the required left
square bracket ([). (<code> is an internal diagnostic code.)

ACTION: Use square brackets ([1) to enclose the state variable
names and state variable values in the States subsection.

ERR-SMV.- State variable definition must end with ']’

CAUSE: The state variable definition field (in the States subsection)
does not terminate with a right square bracket (1).
ACTION: Ensure that the state variable names and each group of

state variable values are enclosed in square brackets ([]).

ERR-SMV- States subsection terminated incorrectly

CAUSE: Your input SMF contains a state machine whose States
subsection is not terminated by a ‘I’ or not followed by a
Transitions subsection, Machine Section, Truth Table
Section, or END$ statement.

ACTION: Ensure that the States subsection ends with one of the
items listed above.

Messages-8 State Machine Converter Messages

ERR-SMV-

CAUSE:

ACTION:
ERR-SMV-

CAUSE:
ACTION:

ERR-SMV-

CAUSE:

ACTION:

ERR-SMYV-

CAUSE:
ACTION:

ERR-SMV-

CAUSE:

ACTION:

ERR-SMYV-

CAUSE:
ACTION:

State Machine Converter Messages

Syntax error in <machine name>

A Boolean expression in your input SMF contains a syntax
error. For example, this message occurs if the SMV finds a
name (possibly complemented) that is not followed by a
binary operator or a parenthesis.
Check the SMF for syntax errors.

Too many state variables

Your input file contains a state machine with more than 16
state variables, which is the maximum allowed.

Reduce the number of state variables in each state machine
to 16 or less. (You may use multiple state machines in a
single SMF.)

Too many/few state variable values

The number of state variable values given in a state
definition is not equal to the number of state variable names
listed at the beginning of the States subsection.

Ensure that there are as many state variable values as state
variable names.

Truth table: missing <str> declarations

The T_TAB: keyword is not followed by any <str> (i.e.,
input or output) declarations, which are required.

Add truth table inputs/outputs to your design file. Ensure
that input and output declarations are separated by a colon

Truth table: too many/few <str> arguments

The number of arguments specified for <str> (i.e., inputs or
outputs) does not match those given in the input/output
declarations of the truth table (i.e., on the first line).
Ensure that there are as many input and output arguments
as input and output declarations in each truth table.

Undeclared input: <str>

The <str> given in an INP primitive in the Network Section
of your input file was not declared in the Inputs Section.

Add the specified <str> to the Inputs Section or remove the
INP primitive statement.

Messages-9

ERR-SMV-

CAUSE:
ACTION:

ERR-SMV-

CAUSE:

ACTION:

ERR-SMYV-

CAUSE:
ACTION:

ERR-SMV-

CAUSE:

ACTION:

Messages-10

Undefined state:
name>

(<state name>) in <machine

The indicated <state name> used in the Transitions
subsection is not defined in the States subsection.
Define all states in the States subsection.

Unexpected EOF in <section name>

The End-of-File (EOF) was reached prematurely. This
message indicates that the input SMF is incomplete, is not
terminated with the required END$ statement, or that a
statement in the Network Section has more than 256
characters on a single line.

Ensure that the last line of the SMF is the END$ statement
and that lines in the Network Section contain 256 characters
or less.

Unrecognized section

The input file contains an unrecognized keyword or symbol
name.

Check the SMF for syntax errors and remove all keywords
other than OPTIONS:, PART:, INPUTS:, OUTPUTS:,
NETWORK:, EQUATIONS:, MACHINE:, CLOCK:,
CLEAR:, STATES:, OUTPUTS:, and T_TAB:.

Unrecognized symbol in state assignment

The state assignment (state variable value) in the States
subsection contains a string which is not a 1, 0, or X (in
positional format), or a complemented or uncomplemented
state variable name (in keyword format).

Check the States subsection for errors.Ensure that the
state variable values are assigned in only one of the two
formats given above.

State Machine Converter Messages

Information Messages

INFO-SMV-
CAUSE:
ACTION:

INFO-SMV-

CAUSE:
ACTION:

INFO-SMV-

CAUSE:

ACTION:

Beginning Execution

The State Machine Converter (SMV) has begun converting
your input design file into an Altera Design File (ADF).
No action is required.

Conversion completed successfully

The SMV has successfully converted the SMF into an ADF.
You may submit the resulting ADF to the ADP at any time.

Conversion terminated abnormally

The SMV was unable to complete the SMF-to-ADF
conversion. This message always follows other error and/or
warning messages.

Correct the errors and resubmit the file to the SMV.

Warning Messages

WARN-SMV-

CAUSE:

ACTION:

WARN-SMV-

CAUSE:

ACTION:

Empty truth table: no statements

The truth table contains only one line (i.e., the T_TAB:
keyword and input and output declarations are not followed
by input and output arguments).

Enter the input and output arguments (statements) for the
truth table or remove the line containing the T_TAB:
keyword.

No exit from state: (<state name>) in <machine
name>

The <state name> has no transitions leading to other
states (i.e., there is no way to leave <state names>). You
may have misspelled a state name.

Check the current entries for destination states in the
Transitions subsection. Ensure that all transitions can lead
to another state.

State Machine Converter Messages Messages-11

WARN-SMV- Symbol too long in <machine name>

WARN-SMV-

WARN-SMV-

WARN-SMYV-

Messages-12

CAUSE:
ACTION:

CAUSE:
ACTION:

CAUSE:
ACTION:

CAUSE:
ACTION:

There are too many characters in a state variable name,
state name, or node name.

Use a maximum of 8 alphanumeric characters in the names
listed above.

Unreachable Case statement: (<state name>) in
<machine name>

The SMV detected a Case statement that was preceded by
an unconditional transition.

Ensure that the order of transitions allows all transitions to
be reached. (All transitions are evaluated in the order in
which they are entered.) If the unconditional transition
represents the implied ELSE, it must follow the Case
statement transition.

Unreachable conditional statement: (<state
name>) in <machine name>

The SMV detected a conditional transition (IF statement)
that was preceded by an unconditional transition.

Ensure that the order of transitions allows all transitions to
be reached. (All transitions are evaluated in the order in
which they are entered.) If the unconditional transition
represents the implied ELSE, it must follow the conditional
transition.

Unreachable unconditional statement: (<state
name>) in <machine name>

The SMV detected two unconditional transition statements in
succession.

Check the input SMF for errors and ensure that each
unconditional transition follows a conditional transition.

State Machine Converter Messages

	03016215 ==============.tif
	03016216.tif
	03016217.tif
	03016218.tif
	03016219.tif
	03016220.tif
	03016221.tif
	03016222.tif
	03016223.tif
	03016224.tif
	03016225.tif
	03016226.tif
	03016227.tif
	03016228.tif
	03016229.tif
	03016230.tif
	03016231.tif
	03016232.tif
	03016233.tif
	03016234.tif
	03016235.tif
	03016236.tif
	03016237.tif
	03016238.tif
	03016239.tif
	03016240.tif
	03016241.tif
	03016242.tif
	03016243.tif
	03016244.tif
	03016245.tif
	03016246.tif
	03016247.tif
	03016248.tif
	03016249.tif
	03016250.tif
	03016251.tif
	03016252.tif
	03016253.tif
	03016254.tif
	03016255.tif
	03016256.tif
	03016257.tif
	03016258.tif
	03016259.tif
	03016260.tif
	03016261.tif
	03016262.tif
	03016263.tif
	03016264.tif
	03016265.tif
	03016266.tif
	03016267.tif
	03016268.tif
	03016269.tif
	03016270.tif
	03016271.tif
	03016272.tif
	03016273.tif
	03016274.tif
	03016275.tif
	03016276.tif
	03016277.tif
	03016278.tif
	03016279.tif
	03016280.tif
	03016281.tif
	03016282.tif
	03016283.tif
	03016284.tif
	03016285.tif
	03016286.tif
	03016287.tif
	03016288.tif
	03016289.tif
	03016290.tif
	03016291.tif
	03016292.tif
	03016293.tif
	03016294.tif
	03016295.tif
	03016296.tif
	03016297.tif
	03016298.tif

